
Introduction
Understanding, modeling, and predicting epidemic outbreaks 
of infectious diseases bear great importance. Not only will the 
costs of vaccination and treatment be reduced, but also this 
may be the only way to control incurable diseases such as 
AIDS. Because of high disease transmission rates and their 
complications, infectious diseases such as influenza add to 
the need to investigate the spread of contagious diseases. 
Although the mechanism of epidemiological transmission 
of infectious diseases, such as fever, AIDS, and influenza, 
is complex, a better understanding of the problem can be 
achieved by using mathematical modeling.

Research in the epidemiology field has traditionally 
employed mathematical models to successfully reproduce 
the observed incidence and prevalence of diseases,1 including 
influenza,2 HIV,3 smallpox,4 and malaria5 among others. These 
models are important for both improving our understanding 
of potentially novel disease strains, e.g., A/H1N1,6 and 

developing the actions for infectious disease outbreaks.
Although in 1760, Daniel Bernoulli formulated and 

solved a model for smallpox to evaluate the effectiveness 
of variolation of healthy people with the smallpox virus,7 
deterministic epidemiology modeling seems to actually have 
started in the 20th century. In 1906, Dietz formulated and 
analyzed a discrete time model in an attempt to understand 
the recurrence of measles epidemics.8,9 Ross was interested 
in the incidence and control of malaria, so in 1911, he 
developed differential equation models for it as a host-vector 
disease.10,11 Starting in 1975 and 1967, Bailey and Dietz,12,13 

published papers on epidemic models and obtained the 
epidemic threshold result that the density of susceptibility 
must exceed a critical value in order for an epidemic outbreak 
to occur. Mathematical epidemiology seems to have grown 
exponentially starting in the middle of the 20th century 
(the first edition in 1957 of Bailey’s book14 is an important 
landmark), so that a tremendous variety of models has now 
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Abstract

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which 
is due to the fact that the epidemic process is not directly observable.
Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and 
recovery rate, is data intensification. In this method, unknown quantities are considered as additional parameters of the model and are 
extracted using other parameters. The Markov Chain Monte Carlo algorithm is extensively used in this field.
Results: The current study presents a Bayesian statistical analysis of influenza outbreak data using Markov Chain Monte Carlo data 
intensification that is independent of probability approximation and provides a wider range of results than previous studies. A method 
for estimating the epidemic parameters has been presented in a way that the problem of uncertainty regarding the modeling of dynamic 
biological systems can be solved. The proposed method is then applied to fit an SIR-like flu transmission model to data from 19 years 
leading up to the seventh week of the 2017 incidence of influenza. 
Conclusion: The proposed method showed an improvement in estimating the values of all the parameters considered in the study. The 
results of this study showed that the distributions are significant and the error ranges are real.
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been formulated, mathematically analyzed, and applied to 
infectious diseases. Literature reviews15-18 show the rapid 
growth of epidemiology modeling. Recent models have 
considered aspects such as passive immunity.19,20 gradual loss of 
vaccine and disease-acquired immunity, stages of infection,21 
vertical transmission, disease vectors, macro-parasitic loads, 
age structure, social and sexual mixing groups, spatial spread, 
vaccination, quarantine, and chemotherapy. Special models 
have been formulated for diseases such as measles, rubella, 
chickenpox, whooping cough, diphtheria, smallpox, malaria, 
onchocerciasis, filariasis, rabies, gonorrhea, herpes, syphilis, 
and HIV/AIDS.

Compartmental Models
Compartmental models estimate the number of people in 
different disease phases.22 SIR, SIS, SIRS, SEIR, and MSIR are 
prevalent compartment models in which S, E, I, R, and M, 
respectively, represent the population susceptible to infection, 
exposed to infection, infected with the virus, recovered from 
infection, and having passive immunity.

The decision to select and include compartments in a model 
depends on the characteristics of the particular disease being 
modeled and the purpose of the model. The passively immune 
class M and the latent period class E are often omitted, because 
they are not crucial for the susceptible-infective interaction. 

The threshold for many epidemiology models is the basic 
reproduction number R0, defined as the number of cases 
generated on average over the course of the infectious period 
of a disease in an otherwise uninfected population. 

For many deterministic epidemiology models, an infection 
can get started in a fully susceptible population if and only 
if R0 > 1. Thus, the basic reproduction number R0 is often 
considered as the threshold quantity that determines when an 
infection can invade and persist in a new host population.20 

Bayesian Inference
Bayesian inference, in its basic mathematical meaning, starts 
with a global probability distribution for all relevant variables, 
observing the values of some of these variables, and quoting 
the conditional distribution of the remaining variables 
given the observations.23 Bayesian methods are criticized for 
the necessity of the priors to be arbitrary or subjective in a 
pernicious or special way. In observational studies, however, 
the priors need be no more arbitrary than the largely arbitrary 
data models routinely slapped on data, and prior models can 
often be given a scientific foundation that is as form or more 
so than that of frequentist data models. Like any analysis 
element, prior models should be scrutinized critically (and 
rejected as warranted), just like frequentist models. When 
prior frequency data is absent or invalid, however, other 
sources of priors will enter, and must be judged critically. 
In the following, how normal log relative-risk priors can be 
transformed into ‘informationally equivalent’ prior frequency 
data will be shown. Elsewhere, how this transformation 
extends to non-normal priors and to other parameters will 
be shown.24 It will be argued that this transformation should 
become a standard method for evaluating whether a prior is 
contextually reasonable, even if the translation is not used to 

compute posteriors.25 

Markov Chain Monte Carlo Algorithms
A sequence of random variables X1, X2, … from a set is 
considered as a Markov chain if moving to the next state 
depends only on the present state and not on the previous 
states, meaning moving to Xn+1 in a set of X1, …, Xn depends 
only on Xn. The set in which the Xi take values is called the 
state space of the Markov chain.

A Markov chain has stationary transition probabilities if 
the conditional distribution of Xn+1 given Xn does not depend 
on n. This is the main kind of Markov chain of interest in 
Markov Chain Monte Carlo (MCMC). The joint distribution 
of a Markov chain is determined by the marginal distribution 
of X1, called the initial distribution, and the conditional 
distribution of Xn+1 given Xn, called the transition probability 
distribution (Because of the assumption of stationary 
transition probabilities, this does not depend on n).

People introduced to Markov chains through a typical 
course on stochastic processes have usually only seen examples 
where the state space is finite or countable.26 If the state space 
{ X1, …, Xn}, then the initial distribution can be associated 
with a vector λ = (λ1, …, λn) defined by equation (1):

P(X1 = xi) = λi, i = 1, …, n (1)
 
and the transition probabilities can be associated with a 
matrix P having elements pij defined by:

(Xn+1 = x_j |Xn = xi )=pij i=1,…,n and j=1,…,n (2)

When the state space is countably infinite, we can think of 
an infinite vector and matrix. Most Markov chains of interest 
in MCMC, however, have uncountable state space, and thus, 
we cannot think of the initial distribution as a vector or the 
transition probability distribution as a matrix. They must be 
considered as an unconditional and a conditional probability 
distribution, respectively.

Methods
Study Population
Infectious disease surveillance systems are powerful tools for 
monitoring and understanding infectious disease dynamics; 
however, underreporting (due to both unreported and 
asymptomatic infections) and observation errors in these 
systems create challenges for delineating a complete picture 
of infectious disease epidemiology.

The Center for Disease Prevention and Control in the 
United States publishes positive flu test reports from clinical 
laboratories and public health labs on a weekly basis on its 
website, cdc.gov. This data includes the reported number of 
Type-A flu (including H3N2v, H1N1 and H3) and type-B 
flu (including BVIC and BYAM) cases per week. The data 
belonging to the 19 years leading up to the 33rd week of 2017 
is accessible from the CDC website. The research population 
used included the number of type-A flu cases reported from 
the year 1997 to August 19th, 2017.
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The Stochastic SIR Model
The proposed model in this paper is a stochastic SIR model in 
which the state of the population at time t is defined through 
a vector with non-negative integer elements s(t) = (S(t), 
I(t)) denoting the number of individuals in susceptible and 
infective states. The model is specified using the parameter 
vector v = (S0, a, Re, m).

If each transition from one state to another is defined as 
an event, this model includes a total of 2 event types. The 
first is when a susceptible individual becomes infected and 
immediately then infective with the rate of λ; the second is 
when an infective is removed from the population with the 
rate of τ. These 2 types of event are shown with S(0) and 
I(0), in which S(0) is an unknown parameter and is to be 
simulated, but the I(0) values are known and I(0)>0. A limit 
for the occurrence frequency of each transition is considered. 
This frequency is shown as ωj and 1 ≤ ωj ≤ ω19, and tj ϵ (0,19) 
shows the time of each transition. First, vector v is selected 
uniformly from V; then s is simulated from the model with 
the parameters of v. The joint density of (v,s) is defined by
β(v,s)dvds ∝ L(v,s)dvdt1…dtωT                                                                                      (3)

Where 

𝐿𝐿(𝑣𝑣, 𝑠𝑠) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−(19 − 𝑡𝑡𝜔𝜔19) ∑ 𝜂𝜂𝑛𝑛 (𝑣𝑣, 𝑠𝑠(𝑡𝑡𝜔𝜔19))
𝑛𝑛∈𝑅𝑅

)

× ∏ 𝜂𝜂𝜔𝜔𝑗𝑗 (𝑣𝑣, 𝑠𝑠(𝑡𝑡𝑗𝑗))  𝑒𝑒𝑒𝑒𝑒𝑒 (−(𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑗𝑗−1) ∑ 𝜂𝜂𝑛𝑛 (𝑣𝑣, 𝑠𝑠(𝑡𝑡𝑗𝑗))
𝑛𝑛∈𝑅𝑅

)
𝜔𝜔19

𝑗𝑗=1
 

 
Parameters of the model
Variable: Definition
S_0: Initial number of people susceptible to the disease
Α: Fraction of infected people who are infectious
R_e: Effective reproduction number
M: migration rate 

The parameter-estimation approach used in this study 
considers a density π(v,s) which is proportional to β(v,s. 
Thus, π(v,s) represents the posterior joint density of v and s 
conditional upon the observations N(t), assuming a uniform 
prior for v.

Since no information is available on the output of the model, 
uninformative priors are used as the parameters.
U(0,1)
A search is performed for the parameters’ feasible space 
through the Markov Chain Monte Carlo. Error distribution, 
φi, i ϵ {1, …, K}, is assumed to be of normal distribution with 
the following attributes:
N(μ = 0.002, 0.00052)

Thus, L(φi) will be a normal probability function with fixed 
variance of ϭ2.

Construction of the MCMC Sampler
Constructing a Markov chain for problems is not unique; 
here, we propose a Metropolis-Hastings algorithm in which a 
new state is generated based on the current state. To construct 
our Markov chain, the new state ωi+1 = (αi+1, si+1) is obtained 
from (αi, si) through the following steps:
αi+1 is selected from the density distribution (5).

𝜋𝜋(𝛼𝛼|𝑠𝑠𝑖𝑖) =
𝐿𝐿(𝛼𝛼, 𝑠𝑠𝑖𝑖)

∑ 𝐿𝐿(𝑏𝑏, 𝑠𝑠𝑖𝑖)𝑏𝑏∈𝐴𝐴
                                                                (5)

The realization si+1 is obtained by applying the realization 
updating procedure M times to si to generate a sequence 
of states σi0, σi1, …, σiM, where si = σi0 and si+1 = σiM. Each σij 
is obtained from σi(j-1) by inserting, deleting, or translating 
an event of type I´ in σi(j-1) to produce a candidate state σ´. 
Mutations of each type are proposed with equal probability 
(p1 = p2 =1/3). Depending on the kind of mutation proposed, 
the state σ´ is accepted (σij = σ´) with αi replaced by αi+1; αi 
has already been updated in Step 1; otherwise, the change is 
rejected (σij = σi(j-1)). M is selected to be large enough (5000 in 
this paper) to explore more space in the s-direction than in 
the α-direction.

Multi-seasonal Influenza Spread
In this paper, an SIR transmission model is used to describe 
the transmission of influenza. The major difference between 
the proposed model and the standard SIR model is that despite 
the SIR model, a fraction of infected people are infectious at 
the same time; others are undefeated and show no symptom 
of the virus. A migration rate is also assumed in the model. 
The standard SIR model, which was introduced by Kermack, 
is shown through relations (6) to (9).

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝛽𝛽𝛽𝛽𝛽𝛽 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛼𝛼𝛼𝛼 

 

                                                                       (6)
                                                                                                      (7)
                                                                                                                                                                                                                                                                                                            
                                                                                                                                                 (8)

Thus, by considering the fraction α and the migration rate, 
the proposed model would be defined as relations (9) to (12):

𝜆𝜆 = 𝛽𝛽(𝛼𝛼𝛼𝛼 + 𝑚𝑚) 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜆𝜆𝜆𝜆 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜆𝜆𝜆𝜆 − 𝜏𝜏𝜏𝜏 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝜏𝜏𝜏𝜏 

 

                                                                       (9)

                                                                                                     (10)

                                                                                                              (11)

                                                                                                     (12)

The variables and parameters used in the model above are 
defined as:
Variables used
S: Number of susceptible people
α: Fraction of infected people who are infectious
m: Migration rate
Parameters used
I: Number of infected people
R: Number of recovered people
λ: Influenza transmission rate in proposed model
β: Influenza transmission rate in SIR model
τ: Recovery rate
t: Time
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In order to model the seasonal data of influenza epidemics 
in the United States, it is assumed that the transmission rate β 
decreases during summer holidays resulting in a reduction in 
the transmission rate. For the rest of the year, β is assumed to 
be large enough to keep the transmission stable. During this 
period, the effective reproduction number, R_e, is defined 
according to relation (13).

𝑅𝑅𝑒𝑒 =
𝛽𝛽𝛽𝛽
𝜏𝜏 𝑆𝑆0                                                                             (13)

In this relation, S0 is the number of susceptibles at the start 
of each transmission season.

In the proposed model, the total population is assumed to 
be constant and is the summation of susceptible, infected, and 
recovered people. S0 is estimated as one of the model outputs, 
and I0 is the number of infected people in the first week of the 
data series used. The remaining population belongs to R.

There is a lack of information on the history of the epidemic. 
Thus, to begin the simulation, arbitrary random distributions 
are assigned to the parameters of interest. The uniform 
distributions assigned to each model variable are:

The posterior distributions of each variable are obtained from 
5000 samples using the Metropolis-Hastings algorithm. The 
steps of this algorithm are discussed in Methods.
The MCMC algorithm is used to generate estimates of the 
marginal parameter density πc(v) over v = 0.001,0.002,0.1 and 
the marginal initial-condition density πc (652). The first of 
these is estimated by averaging 5000 conditional densities πc 
(v|sc) with M = 1000 mutations being proposed between the 
calculation of each density. The density πc (652)is estimated 
from a histogram formed from the set of all 5×106 realizations, 
σij (1≤ i≤ 5000, 1≤ j ≤ 1000), generated in the simulation. 
Note that the joint density πc(v, 652) can be estimated as a 
histogram over a two-dimensional grid of cells indexed by 
I(0) and the current value of v.

Simulation Convergence Study
To investigate the convergence of the Markov Chain Monte 
Carlo algorithm used for parameter estimation, trace diagrams 
and the probability density function for each parameter are 
plotted.

In the trace diagrams, the vertical axis represents the 
simulated values of the parameters, and the horizontal axis 
represents the number of repetitions; these simulated values 

are connected with a line. Due to the scattering and trends in 
the trace diagrams, one can comment on the convergence of 
the simulation results.

Results
After collecting the data and developing the model, the 
proposed algorithm was run and the results were recorded. 
The results of estimating the proposed model variables and 
the results from the filter-based simulation method (EAKF/
PF)27 are provided and compared in Table 1. The estimated 
mean and mode of the unknown parameters were all in the 
equal-tailed 95% confidence interval, and no significant 
difference was observed between the proposed model 
results and the results of Yang.28 In this study, 5000 MCMC 
samples were used to estimate the parameters of interest. The 
estimated value of the basic reproduction number mean was 
7.96, which is 1.09 greater than the Yang28 estimate. Similarly, 
the estimation of the proposed method from the reproduction 
number of the symptoms period was 0.53, which was 0.164 
greater than the estimate of Yang.28 The significant difference 
in this case can be explained by the high skewness of the b 
parameter posterior density function, which resulted in a 
significant difference in mean and mode values.

Sensitivity Analysis
The sensitivity analysis of individual-based models of 
epidemic dynamics were used to evaluate the effect of disease 
parameters on public policy-related questions.28 

For individual-based models used in the study of influenza-
like epidemics, sensitivity analyses could focus on changes in 
interventions and response strategies such as in the studies by 
Nsoesie et al,29  Halloran et al,30  Germann et al,31 and Brooks 
et al.32 The current study aimed to explore the sensitivity of 
an individual-based epidemiology model to changes in the 
assumptions made regarding the characteristics of the disease.
The sensitivity analysis of the results to decide on the behavior 
of the disease transmission is provided in Table 2.
To evaluate the fitness of the outbreak data with the 
proposed model, the Posterior Probability distribution was 
used. The samples from the model’s basic parameters were 
taken as output, and a forward time model simulation was 
performed for the MCMC of each set of parameters. Then, 
different aspects of the observed data were compared with the 
simulation results in order to determine the data alignment of 
the previous and new results. 

Discussion
The current study analyzed the incidence of influenza in 
the United States between 1997 and 2017. The stochastic 

𝑆𝑆0 ~ 𝑈𝑈(0,1) 
𝛼𝛼 ~ 𝑈𝑈(0,0.4) 
𝑅𝑅𝑒𝑒 ~ 𝑈𝑈(1,1.4) 
𝑚𝑚 ~𝑈𝑈 (0,4𝑒𝑒 − 6) 

 

Table 1. Parameter Estimates and Confidence Intervals of 95% Compared With the Posterior of Yang and Lipsitch

Parameter Posterior Mean Posterior Mode Confidence Interval Yang and Lipsitch Estimates Confidence Interval of Yang and Lipsitch

S0 68.5 69.1 (64.6, 72.4) 68.9 (65.0,71.6)

α 0.0882 0.0903 (0.0637, 0.1127) 0.0792 (0.0547, 0.0861)

Re 2.97 3.04 (2.77, 3.14) 2.04 (1.84, 2.21)

m 1.78E-0.6 1.98E-0.6 (1.35E-0.7, 2.95E-0.6) 2.84E-0.6 (8.98E-0.7, 3.92E-0.6)
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transmission model used in this study is similar to the model 
developed by Yang,28 but some assumptions of this model 
are controversial, and there are grounds for more studies for 
model development.

In Figure 1, the simulation results of the proposed Monte 
Carlo model are compared with the SIR model. The number 
of susceptible people is higher in the Monte Carlo simulation 
model than in the SIR model, because in the proposed model, 
the spread of disease was prevented by using the information 
method, thus reducing the number of patients. By reducing 
the number of patients and raising public awareness about the 
spread of the disease and ways to prevent it, such as reducing 
contact with patients, there is less need for a vaccine in the 
community.

In this research, the main focus was on the original model, 
and the probabilistic approximation methods used by Yang28 

were avoided. The imputation method used to improve 
the time series data in this research has the advantages 
offlexibility, because they are applied in many areas, and the 
ability to consider and estimate unexpected quantities during 
an epidemic, such as transmission times.

In addition to estimating the parameters of the model, 
it is possible to estimate the quantities that are functions 
of the parameters, such as the propagation numbers and 
the corresponding uncertainty (In contrast, the maximum 
likelihood estimation method usually requires asymptomatic 
results to exceed the estimated points).

To determine the implementation convergence for the 
Markov Chain Monte Carlo algorithm so as to estimate 
the parameters, trace diagrams, histogram diagrams, and 
the probability density function for each parameter are 
illustrated. In the trace diagrams, the vertical axis represents 
the simulated parameters, and the horizontal axis represents 

the iteration numbers; these simulated values are linked to 
each other. Based on the scattering and trend of the data in the 
trace diagrams, a conclusion on the simulation convergence 
is provided. 

The histogram diagrams show the general shape of the 
posterior marginal distribution of the model parameter. The 
use of histograms and kernel density estimates of the posterior 
marginal distributions of the parameters is necessary to ensure 
that these empirical distributions have the expected behavior.

Figure 2 shows the scatter diagrams of samples derived 
by MCMC methods. In these diagrams, the horizontal axis 
represents the time, and the vertical axis represents the 
number of cases (diseases) observed. Figure 3 shows the 
trace diagrams regarding the (a) initial number of people 
susceptible to the disease, (b) fraction of infected people 
who are infectious, (c) effective reproduction number, and 
(d) migration rate based on 5000 MCMC samples. As stated 
above, the vertical axis represents the simulated values, and 
the horizontal axis represents the number of repetitions. 

Another strategy for disease control is the optimal control 
strategy in the form of vaccination to control suspected 

Table 2. Sensitivity Analysis of Model Parameter Estimates

Parameter Posterior Mean Lower Limit of Confidence Interval Upper Limit of Confidence Interval

S0 -0.4 -0.4 +0.8

α +0.009 +0.019 +0.0266

Re +0.93 +0.84 +0.97

m -1.06E -7.63E -0.97E

Figure 1. Comparison of the Number of Susceptible People (the Monte Carlo 
Simulation Model and the SIR Model). Figure 2. Trace Diagrams of Simulated Model Parameters.

9  
 

 
(a) Sample values in each iteration for the initial number of people susceptible to the disease 

 
(b)  Sample values in each iteration for the fraction of infected people who are infectious 

 
(c)  Sample values in each iteration for effective reproduction number 

 
(d) Sample values in each iteration for migration rate 
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populations and to increase the population of the recovered 
people.33

The optimal control theory is used, because it is a mature 
mathematical field with multiple applications in both science 
and engineering.

 For example, in one paper, optimal control strategies of a 
time-delayed epidemic SIR model are introduced, in which 
control means the treatment of contagious hosts.34 Here, 
optimal control is used to minimize the probability of the 
expansion of the contagious population and to maximize 
the total number of suspected and recovered populations. 
To this end, a control variable, which represents the optimal 
treatment for contagious hosts is first introduced, and then 
an optimal control system for the SIR epidemic model is 
given. Next, the base propagation rate is calculated, and the 
dynamic behavior of the controlled SIR epidemic model is 
examined. In addition, an optimal control for this problem 
has been developed and indicates that infection in a set of 
cells will be eliminated by this optimal control treatment. It 
also examines the optimal control and optimization of the 
system using optimal control techniques. It shows that the 
base reproductive number is less than one, so the disease is 
eliminated within the target population by using the control 
method. In addition, optimal control strategies reduce the 
number of influenza patients and increase the total number 
of suspected and improved populations.

As can be seen in Figure 4, the number of vaccinated 
individuals was reduced using optimal control, which was 
one of the goals in the current study. Reducing the number of 
vaccinated people and increasing the number of susceptible 
people means that there are fewer costs involved in 

  
 

 
(a) Probability density function for the initial number of people susceptible to the disease 

 
 (b) Probability density function for the fraction of infected people who are infectious 

 
(c) Probability density function for the effective reproduction number 

 
(d) Probability density function for the migration rate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Posterior Density Functions Estimated From Model Parameters

Figure 4. Comparison of SIR and Monte Carlo Models With and Without 
Optimal Control.

vaccination preparation, because the disease can be prevented 
by increasing people’s awareness; there is no need to vaccinate 
large numbers of people to prevent the spread of the disease. 
Moreover, as people’s awareness increases, the relationship 
between susceptible and infected people decreases, resulting 
in a decrease in the number of patients, both non-carriers and 
those who are contagious.
•	 Ability to estimate communication between parameters.
•	 Because the analysis performed in the current study 

was based on a transmission model, it is possible that by 
simulating the model, the ability to evaluate and examine 
other scenarios can be modeled.

Conclusion
Estimation of the basic parameters of the model shows that 
the transmission between the individuals in each group was 
dominant; this means that the vast majority of transmission 
events occur within each group, and the disease is spread 
within groups and households. 

Estimated posterior mean R_e is close to 2.97 in this study. 
The value obtained is greater than the estimate of old models, 
which was 2.04, reminding us of the devastating nature 
of the flu. These values are fundamentally different from 
those obtained from simpler models that emphasized the 
importance of models that take the demographic structure 
into account.

According to the assumptions made for the model, control 
measures reduce the duration of a person’s disease symptoms 
from an average of 7 days to 3 or 4 days, resulting in fewer 
infected people. If the pre-control and post-control measures 
for dissemination within larger groups or populations are 
defined, then estimates from the latter mean that (a) within-
group epidemics before and after quarantine were beyond 
critical; (b) in the vaccinated population, the epidemic state 
shifts from super-critical to sub-critical, and (c) in larger 
populations, the epidemic will always be sub-critical. Despite 
this, the increase in quarantine time in the simulations 
shows an increase in the size of the outbreak. For example, 
considering quarantine times of 10, 20, and 40 days results in 
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approximately 12, 22, and 32 outbreaks on average. However, 
with no limitations in this study, the average outbreak was 
approximately 43 days, indicating that the epidemic was sub-
critical.

As previously mentioned, the effective reproduction 
number shows the average number of secondary people 
defined as suffering from an infected person in a susceptible, 
sufficiently large population. In the current study, the practice 
of such an interpretation is directly problematic, because the 
population of each group, which is dominated by traps within 
them, is also small enough to create a quick saturation effect 
by engaging all available susceptible people.

The Markov Chain Data Intensification Methods used in 
this study have the following advantages: 
(A) Flexibility. They have applicability in many areas.
(B) They have the ability to consider and estimate unobserved 
quantities during epidemics such as disease transmission 
times.
(C) In addition to estimating model parameters, it is possible 
to estimate quantities that are a function of parameters 
such as the corresponding duplication numbers and related 
uncertainties (In contrast, the maximum likelihood estimation 
method usually requires asymptotic results to yield results 
beyond the point estimates).
D) They have the possibility of estimating inter-parametric 
relationships.

Since the analysis performed in this study is based on a 
transfer model, it is possible to perform model simulations 
to evaluate the model and investigate other scenarios. This 
feature is unlike other methods that use a model based on the 
observed data.
 
Limitation
The major limitations we face in modeling issues are access 
to sufficient and appropriate data to ensure the model’s data 
fitness, particularly in phenomena such as epidemics; we often 
encounter data malfunction or low data volume. Depending 
on its type, it is possible to simulate the data, but in cases 
such as community vaccination or prevention status, precise 
information from relevant institutions must be available if we 
want to achieve high accuracy of the model.

What Is Already Known?
To estimate the number of parameters of interest, the 
marginal probabilities of posterior distribution of 
parameters must be calculated; however, this is impossible, 
because the infection transition process is not directly 
observable.

What This Study Adds?
Markov Chain Monte Carlo algorithms make it possible 
to derive the distribution of unknown variables without 
the requirement of directly calculating the marginal 
probabilities through data imputation methods.
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