Data Mining: A Novel Outlook to Explore Knowledge in Health and Medical Sciences

Authors

1 School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

2 Department of Industrial Intelligence Research Group, ACECR, Zanjan Branch, Zanjan, Iran

Abstract

Today medical and Healthcare industry generate loads of diverse data about patients, disease diagnosis, prognosis, management, hospitals’ resources, electronic patient health records, medical devices and etc. Using the most efficient processing and analyzing method for knowledge extraction is a key point to cost-saving in clinical decision making. Data mining, sometimes called data or knowledge discovery, is the process of analyzing data from different perspectives and summarizing it into useful information. In medicine, this process is distinct from that in other fields, because of heterogeneity and voluminosity of the data. Herein we reviewed some of published articles about application of data mining in several fields in medicine and healthcare.

Keywords


Adel A, Ahmadi P, Sebt M. Designing model for choosing human resources with data mining approach. Journal of Iranian Technology 2010; 2(4): 5. [In Persian]
Han J, Kamber M, Pei J. Data mining: concepts and techniques. 3rd ed. Philadelphia: Elsevier; 2011.
Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI magazine. 1996;17(3):37.
Mullins IM, Siadaty MS, Lyman J, Skully K, Miller WG, et al. Data mining and clinical data repositories: Insights from a 667,000 patient data set. Comput Biol Med. 2006 Dec;36(12):1351-77.
Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. Advance in knowledge discovery and data mining. 01 February 1996.
Hayati Z, Sadeghi Mojarad M, Jafari N. Discovery of electronic information, track user's movement using association rules algorithm in data mining: a case study of the University Library website URL STS Australia. Ketabdari VA etelaresani. 1389(13):251-283. [In Persian].
Park JE. Parks textbook of preventive and social medicine, 18th edition, M/s Banarsidas Bhanot Publishers, India, 2005. p: 162-183.
Jekel J, Katz D, Elmore J. Epidemiology, biostatics, and preventive medicine. sec. ed. W.B. Saunders comp, 2001, p: 52-54.
Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001.
Hand DJ. Statistics and data mining: Intersecting disciplines. ACM SIGKDD Explorations. 1999;1(1):16-19
Asadi N, Sadrodini M. Employing data mining to identify cancer risk factors and determine the optimal treatment in Namazi hospital cancer database. 16th Annual National Conference of Computer Society of Iran, 2010; Sharif University.
Jajroudi M, Baniasadi T, Kamkar L, Arbabi F, Sanei M, Ahmadzadeh M. Prediction of Survival in Thyroid Cancer Using Data Mining Technique. Technol Cancer Res Treat. 2014 Aug;13(4):353-9.
Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. J. Artificial Intelligence in Medicine. 2010;34:113-27.
Lundin M, Lundin J, Burke HB, Toikkanen S, Pylkkanen L, Joensuu H. Artificial neural networks applied to survival prediction in breast cancer. Oncology. 1999;57(4):281-6.
Tooloei A, Pourebrahimi A, Ebrahimi M et al. Using Data Mining Techniques for Prediction Breast Cancer Recurrence. Iranian Journal of Breast Disease. 2013;5(4):23-34.
Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G, et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer. 2005;103(8):1596-605.
Chiu HC, Ho TW, Lee KT, Chen HY, Ho WH. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network. Scientific World Journal. 2013 Apr 30;2013:201976.
Hanai T, Yatabe Y, Nakayama Y, Takahashi T, Honda H, Mitsudomi T, et al. Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression. Cancer Sci. 2003;94(5):473-7.
Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell FE, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 1997;79(4):857-62.
Miyaki K. Takei I. Watanabe K. Nakashima H, Watanabe K, Omae K. Novel statistical classification model of type 2 diabetes mellitus patients for tailor-made prevention using data mining algorithm. J epidemiol. 2002;12(3): 243-8.
Rohlfing CL, Wiedmeyer HM, Little R, England JD, Tennill A, Goldstein DE. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care. 2002;25(2):275-8.
Huang Y. McCullagh P. Black N. Harper R. Feature selection and classification model construction on type 2 diabetic patients’ data. Artif intell med. 2007;41(3):251‐62.
Meng XH, Huang YX, Rao DP, Zhang Q, Liu Q. Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci. 2013 Feb; 29(2):93-9.
Kim HS, Shin AM, Kim MK, Kim YN. Comorbidity study on type 2 diabetes mellitus using data mining. Korean J Intern Med. 2012 Jun;27(2):197-202.
Gregori D, Petrinco M, Bo S, Rosato R, Paqano E, Berchialla P, Merletti F. Using data mining techniques in monitoring diabetes care. The simpler the better?. J Med Syst. 2011;35(2):277-81.
Ameri H, Alizade S, Barzegari A. Knowledge extraction of diabetics' data by decision tree method. Journal of Health Administration. 2013:53(3):58-72. [In Persian]
Sepehri MM, Rahnama P, Shadpour P, Teimourpour B. A data mining based model for selecting type of treatment for kidney stone patients. Tehran University Medical Journal. 2009;67(6):421-7.
Rezapour M, Khavanin Zadeh M, Sepehri MM. Implementation of predictive data mining techniques for identifying risk factors of early AVF failure in hemodialysis patients. Comput Math Methods Med. 2013:830745.
Shah S, Kusiak A, Dixon B. Data mining in predicting survival of kidney dialysis patients, in proceedings of photonics west. Bios 2003, Bass, L.S. et al. (Eds), Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII, Vol. 4949, SPIE, Belingham, WA, January 2003, p:1-8.
Kusiak A, Bradley Dixonb, Shital Shaha. Predicting survival time for kidney dialysis patients: a data mining approach. Computers in Biology and Medicine; 2005:35(4):311-327.
Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiqlio R. Decisional trees in renal transplant follow-up. Transplant Proc. 2010 ;42(4):1134-6
Dehghani T, Afshari Saleh M, Khalilzadeh M. A genetic K-means clustering algorithm for heart disease data. 5th Conference of Data Mining of Iran, 2011; Amirkabir University.
Zamanpoor S, Shamsi M. Assess and compare the accuracy of data mining algorithms to predict a heart disease. 4th Iranian Cnference on Electrical and electronics Engineering, 1391 Gonabad, Iran.
Austin PC, Lee DS, Steyerberg EW, Tu JV. Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods?. Biom J. 2012;54(5):657-73.
Koh HC, Tan G. Data Mining Application in Healthcare. J Healthc Inf Manag. 2005 Spring;19(2):64-72.
Balib RK. Clinical Knowledge Management: Opportunities and Challenges. Hershey: Idea Group Inc (IGI); 2005.
Trifirò G, Pariente A, Coloma PM, Kors JA, Polimeni G, Miremont-Salame G, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor?. Pharmacoepidemiol Drug Saf. 2009;18(12):1176-84. 
Warner JL, Zollanvari A, Ding Q, Zhang P, Snyder GM, Alterovitz G.Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications. J Am Med Inform Assoc. 2013 Des;20(e2):e281-7
Obenshain MK. Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol 2004;25(8): 690-5.
Rogers G, Joyner E. Mining Your Data for Healthcare Quality Improvement [Online]. 2011 [cited 2011 Aug 8]; Available from: URL: http://www2.sas.com/proceedings/sugi22/EMERGING/PAPER139.PDF
Cios KJ. From the guest editor medical data mining: knowledge discovery in a clinical data warehouse. Engineering in Medicine and Biology Magazine, IEEE. 2000;19(4):15-6.