Update on Epidemiology and Circulating Genotypes of Rotavirus in Iranian Children With Severe Diarrhea: 1986-2015

Document Type: Mini Review

Authors

1 Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2 Virology Department, Pasteur Institute of Iran, Tehran, Iran

Abstract

Rotaviruses are the most common cause of severe diarrhea in children under 5 years of age worldwide with a higher prevalence in developing countries. In accordance with the World Health Organization (WHO) recommendations for the global use of rotavirus vaccines, it is important to review trends of rotavirus epidemiology, distribution and diversity of rotavirus strains in the pre-vaccine period. In Iran, the average rotavirus positivity rate is 40.04% in all patients under 5 years of age hospitalized for acute gastroenteritis (AGE). Studies have shown a substantial increase in the rotavirus detection rate over time from 1986 to 2013. Moreover, there has been continued predominance of G (G1) and P (P[8]) genotypes, although the peak prevalence of G1 appeared to decline in 2007-2011 compared to 2001-2006. The data presented in this review, which suggests a change in the pattern of rotavirus genotypes in the Iranian population, further highlights the important role of continuous monitoring of rotavirus genotypes before starting any national rotavirus vaccination program.

Keywords


  1. Xu C, Fu J, Zhu Y. A Narrative Review of Norovirus Gastroenteritis: More Global Attention Is Needed. Int J Travel Medicine Glob Health. 2016;4(4):101-106. doi:10.21859/ijtmgh-040402.
  2. Jalilvand S, Marashi SM, Tafakhori A, Shoja Z. Extraintestinal Involvement of Rotavirus Infection in Children. Arch Iran Med. 2015;18(9):604-605. doi:0151809/AIM.0010.
  3. Tan EM, Cawcutt KA, Zomok CD, Go RS, Sia IG. Activity of Nitazoxanide Against Viral Gastroenteritis: A Systematic Review. Int J Travel Medicine Glob Health. 2017;5(4):107-112. doi:10.15171/IJTMGH.2017.22.
  4. Bishop RF, Davidson GP, Holmes IH, Ruck BJ. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet. 1973;2(7841):1281-1283. doi:10.1016/S0140-6736(73)92867-5.
  5. Bishop RF, Davidson GP, Holmes IH, Ruck BJ. Detection of a new virus by electron microscopy of faecal extracts from children with acute gastroenteritis. Lancet. 1974;1(7849):149-151. doi:10.1016/S0140-6736(74)92440-4.
  6. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(2):136-141. doi:10.1016/S1473-3099(11)70253-5.
  7. Rotavirus surveillance--worldwide, 2001-2008. MMWR Morb Mortal Wkly Rep. 2008;57(46):1255-1257.
  8. Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med. 2006;354(1):11-22. doi:10.1056/NEJMoa052434.
  9. Vesikari T, Matson DO, Dennehy P, et al. Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine. N Engl J Med. 2006;354(1):23-33. doi:10.1056/NEJMoa052664.
  10. Meeting of the immunization Strategic Advisory Group of Experts, April 2009--conclusions and recommendations. Wkly Epidemiol Rec. 2009;84(23):220-236.
  11. Matthijnssens J, Otto PH, Ciarlet M, Desselberger U, Van Ranst M, Johne R. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. Arch Virol. 2012;157(6):1177-1182. doi:10.1007/s00705-012-1273-3.
  12. Tang B, Gilbert JM, Matsui SM, Greenberg HB. Comparison of the rotavirus gene 6 from different species by sequence analysis and localization of subgroup-specific epitopes using site-directed mutagenesis. Virology. 1997;237(1):89-96. doi:10.1006/viro.1997.8762.
  13. Matthijnssens J, Ciarlet M, Heiman E, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1- like and bovine rotavirus strains. J Virol. 2008;82(7):3204-3219. doi:10.1128/JVI.02257-07.
  14. Matthijnssens J, Ciarlet M, Rahman M, et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol. 2008;153(8):1621-1629. doi:10.1007/s00705-008-0155-1.
  15. Banyai K, Laszlo B, Duque J, et al. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012;30 Suppl 1:A122- 130. doi:10.1016/j.vaccine.2011.09.111.
  16. Santos N, Hoshino Y. Global distribution of rotavirus serotypes/ genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol. 2005;15(1):29-56. doi:10.1002/rmv.448.
  17. WHO. Global Rotavirus Information and Surveillance Bulletin. http://www.who.int/immunization/diseases/rotavirus/rota_info_surv_bulletin/en/. Published 2012.
  18. WHO. Child cause of death: estimates 2000–2013. http://www.who.int/healthinfo/global_burden_disease/estimates_child_cod_2013/en/. Published 2015.
  19. Mousavi Jarrahi Y, Zahraei SM, Sadigh N, et al. The cost effectiveness of rotavirus vaccination in Iran. Hum Vaccin Immunother. 2016;12(3):794-800. doi:10.1080/21645515.2015.1087626.
  20. Javanbakht M, Moradi-Lakeh M, Yaghoubi M, et al. Cost-effectiveness analysis of the introduction of rotavirus vaccine in Iran. Vaccine. 2015;33 Suppl 1:A192-200. doi:10.1016/j.vaccine.2014.12.035.
  21. Shakerian S, Moradi Lakeh M, Esteghamati A, Zahraei M, Yaghoubi M. Cost-Effectiveness of Rotavirus Vaccination for Under-Five Children in Iran. Iran J Pediatr. 2015;25(4):e2766. doi:10.5812/ijp.2766.
  22. Shoja Z, Jalilvand S, Mokhtari-Azad T, Nategh R. Epidemiology of cocirculating human rotaviruses in Iran. Pediatr Infect Dis J. 2013;32(4):e178-181. doi:10.1097/INF.0b013e31827ee392.
  23. Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol. 2010;27(10):2431-2436. doi:10.1093/molbev/msq137.
  24. Doro R, Laszlo B, Martella V, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014;28:446-461. doi:10.1016/j.meegid.2014.08.017.