Unexpected Risks for Campers and Hikers: Tick-Borne Infections

Document Type : Review Article


1 Department of Medical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey

2 Genome and Stem Cell Center (GENKOK), Department of Molecular Microbiology, University of Erciyes, 38039, Kayseri, Turkey

3 Department of Infectious Disease and Clinical Microbiology, Faculty of Medicine, Erciyes University 38039, Kayseri, Turkey

4 Erciyes University Vectors and Vector-borne Diseases Research and Implementation Center 38039, Kayseri, Turkey


Introduction: Camping and hiking are popular worldwide recreational activities. All age groups, elderly or young, immunocompetent or immunosupressive people may engage in these activities. During these activities, individuals may get injured or be exposed to pathogens. There is also a strong possibility of experiencing mosquito, lice, or tick bites, bee stings, or being bitten by scorpions, snakes, rodents, wild or feral animals. This study reviewed the current literature regarding tick-borne infections encountered during recreational activities.
Methods: PubMed and the Web of Science databases were searched for the keywords “campers,” “hikers,” and “tick borne infections.” Major reviews, research papers, and case series on campers and hikers were reviewed, and current articles for tick-borne infections were selected and summarized.
Results: People who engage in recreational activities are potentially at risk for infection from environmental sources. A group of important vector-borne diseases is tick-borne infections, the major agents of which are Babesia spp., Borrelia spp., Rickettsia spp., Ehrlichia spp., Francisella tularensis, Coxiella burnetii, Crimen-Congo Hemorrhagic Fever (CCHF), and Tick-Borne Encephalitis (TBE) viruses. These infections have a widespread geographical distribution.
Conclusion: Participating in outdoor recreational activities is increasing all over the world. While partaking in these activities, humans are frequently exposed to ticks and are potentially at risk for infection. To prevent infection, public and medical awareness is necessary.


  1. Jacobs RF, Schutze GE. The camper’s uninvited guests. In: Schlossberg DL, ed. Infections of Leisure. 3rd ed. Washington DC: ASM Press; 2004:119-135.
  2. Natarajan P, Miller A. Recreational infections. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. Elsevier; 2017:643-646.
  3. Bratton RL, Corey R. Tick-borne disease. Am Fam Physician. 2005;71:2323-2330.
  4. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159-189. doi:10.1016/j.antiviral.2013.07.006.
  5. Beard CB, Eisen RJ, Barker CM, et al. Vectorborne Diseases. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment. Washington: U.S. Global Change Research Program; 2016. doi:10.7930/J0765C7V.
  6. Centers for Disease Control and Prevention (CDC). Life cycle of Hard Ticks that Spread Disease. Atlanta: CDC; 2015. http://www.cdc.gov/ticks/life_cycle_and_hosts.html. Accessed June 1, 2015.
  7. Shchuchinova LD, Kozlova IV, Zlobin VI. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia. Ticks Tick Borne Dis. 2015;6:322-329. doi:10.1016/j.ttbdis.2015.02.005.
  8. Broman T, Thelaus J, Andersson AC, et al. Molecular detection of persistent Francisella tularensis subspecies holarctica in natural waters. Int J Microbiol 2011;2011. doi: 10.1155/2011/851946.
  9. Lai XH, Zhao LF, Chen XM, Ren Y. Rapid identification and characterization of francisella by molecular biology and other techniques. Open Microbiol J. 2016;10:64-77. doi:10.2174/1874285801610010064.
  10. Guthrie AL, Gailbreath KL, Cienava EA, Bradway DS, Munoz Gutierrez JF. Septic tularemia in 2 cottontop tamarins (Sanguinus oedipus). Comp Med. 2012;62:225-228.
  11. Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol. 2014;4:35. doi:10.3389/fcimb.2014.00035.
  12. Mitchell JL, Chatwell N, Christensen D, et al. Development of realtime PCR assays for the specific detection of Francisella tularensis ssp. tularensis, holarctica and mediaasiatica. Mol Cell Probes. 2010;24:72-76. doi:10.1016/j.mcp.2009.10.004.
  13. Ulu Kilic A, Doğanay M. Tularemia: a re-emerging disease. Vet J Ankara Univ. 2013;60:275-280. doi:10.1501/Vetfak_0000002592.
  14. Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis. 2014;12:609-616. doi:10.1016/j.tmaid.2014.10.007.
  15. Balci E, Borlu A, Kilic AU, Demiraslan H, Oksuzkaya A, Doganay M. Tularemia outbreaks in Kayseri, Turkey: an evaluation of the effect of climate change and climate variability on tularemia outbreaks. J Infect Public Health. 2014;7:125-132. doi:10.1016/j.jiph.2013.09.002.
  16. Hodzic E. Lyme Borreliosis: is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains? Bosn J Basic Med Sci. 2015;15:1-13. doi:10.17305/bjbms.2015.594.
  17. Hou J, Ling F, Chai C, et al. Prevalence of Borrelia burgdorferi sensu lato in ticks from eastern China. Am J Trop Med Hyg. 2015;92:262-266. doi:10.4269/ajtmh.14-0587.
  18. O’Connell S, Wolfs TF. Lyme borreliosis. Pediatr Infect Dis J. 2014;33:407-409. doi:10.1097/INF.0000000000000248.
  19. Skotarczak B. Why are there several species of Borrelia burgdorferi sensu lato detected in dogs and humans? Infect Genet Evol. 2014;23:182-188. doi:10.1016/j.meegid.2014.02.014.
  20. Szekeres S, Coipan EC, Rigo K, et al. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit Vectors. 2015;8:309. doi:10.1186/s13071-015-0922-2.
  21. Aucott JN, Luft BJ. Lyme disease. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. Elsevier; 2017:405-414.
  22. Ogden NH, Feil EJ, Leighton PA, et al. Evolutionary aspects of emerging Lyme disease in Canada. Appl Environ Microbiol. 2015;81:7350-7359. doi:10.1128/AEM.01671-15.
  23. Iyer R, Schwartz I. Microarray-based comparative genomic and transcriptome analysis of Borrelia burgdorferi. Microarrays (Basel). 2016;5(2):9. doi:10.3390/microarrays5020009.
  24. Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379:461-473. doi:10.1016/S0140-6736(11)60103-7.
  25. Fang LQ, Liu K, Li XL, et al. Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infect Dis. 2015;15:1467-1479. doi:10.1016/S1473-3099(15)00177-2.
  26. Ismail N, Bloch KC, McBride JW. Human ehrlichiosis and anaplasmosis. Clin Lab Med. 2010;30:261-292. doi:10.1016/j.cll.2009.10.004.
  27. Thomas RJ, Dumler JS, Carlyon JA. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti Infect Ther. 2009;7:709-722. doi:10.1586/eri.09.44.
  28. Yabsley MJ. Natural history of Ehrlichia chaffeensis: vertebrate hosts and tick vectors from the United States and evidence for endemic transmission in other countries. Vet Parasitol. 2010;167:136-148. doi: 10.1016/j.vetpar.2009.09.015.
  29. Paddock CD, Childs JE. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev. 2003;16:37-64.
  30. McQuiston J. Infectious Diseases Related to Travel. Centers for Diseases Control and Prevention; 2015. http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/rickettsial-spotted-typhus-fevers-related-infections-anaplasmosisehrlichiosis#4695.
  31. Raoult D. Introduction to rickettsioses, ehrlichioses, and anaplasmosis. In: Bennett JE DR, Blaser MJ, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, Updated Edition. 8th ed. Saunders; 2015:2194-2197.
  32. Biggs HM, Behravesh CB, Bradley KK, et al. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States. MMWR Recomm Rep. 2016;65:1-44. doi:10.15585/mmwr.rr6502a1.
  33. Drexler NA, Dahlgren FS, Heitman KN, Massung RF, Paddock CD, Behravesh CB. National surveillance of spotted fever group rickettsioses in the United States, 2008-2012. Am J Trop Med Hyg. 2016;94:26-34. doi:10.4269/ajtmh.15-0472.
  34. Parola P, Paddock CD, Socolovschi C, et al. Update on tickborne rickettsioses around the world:a geographic approach. Clin Microbiol Rev. 2013;26:657-702. doi:10.1128/CMR.00032-13.
  35. Faccini-Martinez AA, Garcia-Alvarez L, Hidalgo M, Oteo JA. Syndromic classification of rickettsioses:an approach for clinical practice. Int J Infect Dis. 2014;28:126-139. doi:10.1016/j.ijid.2014.05.025.
  36. Brouqui P, Bacellar F, Baranton G, et al. Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin Microbiol Infect. 2004;10:1108-1132. doi:10.1111/j.1469-0691.2004.01019.x.
  37. Botelho-Nevers E, Socolovschi C, Raoult D, Parola P. Treatment of Rickettsia spp. infections:a review. Expert Rev Anti Infect Ther. 2012;10:1425-1437. doi:10.1586/eri.12.139.
  38. Petersen LR, Ksiazek TG. Zoonotic viruses. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. Elsevier; 2017:1493-1508.
  39. Lani R, Moghaddam E, Haghani A, Chang LY, AbuBakar S, Zandi K. Tick-borne viruses: a review from the perspective of therapeutic approaches. Ticks Tick Borne Dis. 2014;5:457-465. doi:10.1016/j.ttbdis.2014.04.001.
  40. World Health Organization. International travel and health: tick-borne encephalitis. http://www.who.int/ith/diseases/tbe/en/.Accessed October 5, 2016.
  41. Jaenson TG, Hjertqvist M, Bergstrom T, Lundkvist A. Why is tickborne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors. 2012;5:184. doi:10.1186/1756-3305-5-184.
  42. Leblebicioglu H. Crimean-Congo hemorrhagic fever. MA: Waltham; 2016. http://www.uptodate.com/contents/crimeancongo-hemorrhagic-fever. Accessed June 16, 2016
  43. Soares-Weiser K, Thomas S, Thomson G, Garner P. Ribavirin for Crimean-Congo hemorrhagic fever:systematic review and metaanalysis. BMC Infect Dis. 2010;10:207. doi:10.1186/1471-2334-10-207.
  44. Leblebicioglu H. Crimean-Congo haemorrhagic fever in Eurasia. Int J Antimicrob Agents. 2010;36 Suppl 1:S43-S46. doi:10.1016/j.ijantimicag.2010.06.020.
  45. Gunduz A, Turkmen S, Turedi S, Nuhoglu I, Topbas M. Tick attachment sites. Wilderness Environ Med. 2008;19:4-6. doi:10.1580/06-WEME-BR-067.1.
  46. Yilmaz GR, Buzgan T, Irmak H, et al. The epidemiology of Crimean-Congo hemorrhagic fever in Turkey, 2002-2007. Int J Infect Dis. 2009;13:380-386. doi:10.1016/j.ijid.2008.07.021S1201-9712(08)01496-3.
  47. Kalin G, Metan G, Demiraslan H, Doganay M. Do we really need ribavirin in the treatment of crimean-congo hemorrhagic Fever? J Chemother. 2014;26:146-149. doi:10.1179/1973947813Y.0000000123joc281.
  48. Gozel MG, Bakir M, Oztop AY, Engin A, Dokmetas I, Elaldi N. Investigation of Crimean-Congo hemorrhagic fever virus transmission from patients to relatives:a prospective contact tracing study. Am J Trop Med Hyg. 2014;90:160-162. doi:10.4269/ajtmh.13-0306.
  49. Papa A, Dalla V, Papadimitriou E, Kartalis GN, Antoniadis A. Emergence of Crimean-Congo haemorrhagic fever in Greece. Clin Microbiol Infect. 2010;16:843-847. doi:10.1111/j.1469-0691.2009.02996.x.
  50. McGarry JW. Travel and disease vector ticks. Travel Med Infect Dis. 2011;9:49-59. doi:10.1016/j.tmaid.2011.01.002.
  51. Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98:248-260. doi:10.1016/j.antiviral.2013.02.007.
  52. Leblebicioglu H, Sunbul M, Guner R, et al. Healthcare-associated Crimean-Congo haemorrhagic fever in Turkey, 2002-2014: a multicentre retrospective cross-sectional study. Clin Microbiol Infect. 2016;22:387. doi:10.1016/j.cmi.2015.11.024.
  53. Conger NG, Paolino KM, Osborn EC, et al. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21:23-31. doi:10.3201/eid2101.141413.
  54. Jansa J. Crimean–Congo haemorrhagic fever in Spain. Stockholm: European Centre for Disease Prevention and Control; 2016. http://ecdc.europa.eu/en/publications/Publications/crimeancongo-haemorrhagic-fever-spain-risk-assessment.pdf. Updated September 8, 2016
  55. Bodur H, Akinci E, Ascioglu S, Onguru P, Uyar Y. Subclinical infections with Crimean-Congo hemorrhagic fever virus, Turkey. Emerg Infect Dis. 2012;18:640-642. doi:10.3201/eid1804.111374.
  56. Dokuzoguz B, Celikbas AK, Gok SE, Baykam N, Eroglu MN, Ergonul O. Severity scoring index for Crimean-Congo hemorrhagic fever and the impact of ribavirin and corticosteroids on fatality. Clin Infect Dis. 2013;57:1270-1274. doi:10.1093/cid/cit527.
  57. Bakir M, Engin A, Kuskucu MA, Bakir S, Gundag O, Midilli K. Relationship of plasma cell-free DNA level with mortality and prognosis in patients with Crimean-Congo hemorrhagic fever. J Med Virol. 2016;88:1152-1158. doi:10.1002/jmv.24446.
  58. Uyar Y, Carhan A, Albayrak N, Altas AB. [Evaluation of PCR and ELISA-IgM results in the laboratory diagnosis of Crimean-Congo haemorrhagic fever cases in 2008 in Turkey]. Mikrobiyol Bul. 2010;44:57-64.
  59. Atkinson B, Chamberlain J, Logue CH, et al. Development of a real-time RT-PCR assay for the detection of Crimean-Congo hemorrhagic fever virus. Vector Borne Zoonotic Dis. 2012;12:786-793. doi:10.1089/vbz.2011.0770.
  60. Gozel MG, Dokmetas I, Oztop AY, Engin A, Elaldi N, Bakir M. Recommended precaution procedures protect healthcare workers from Crimean-Congo hemorrhagic fever virus. Int J Infect Dis. 2013;17:e1046-e1050. doi:10.1016/j.ijid.2013.05.005.
  61. Kellogg DS, Rosenbaum PF, Kiska DL, Riddell SW, Welch TR, Shaw J. High fecal hand contamination among wilderness hikers. Am J Infect Control. 2012;40:893-895. doi:10.1016/j.ajic.2011.11.009.
  62. Mason RC, Suner S, Williams KA. An analysis of hiker preparedness: a survey of hiker habits in New Hampshire. Wilderness Environ Med. 2013;24:221-227. doi:10.1016/j.wem.2013.02.002.
  63. Reed BC, Rasnake MS. An assessment of coliform bacteria in water sources near appalachian trail shelters Within the Great Smoky Mountains National Park. Wilderness Environ Med. 2016;27:107-110. doi:10.1016/j.wem.2015.09.019.
  64. Boulware DR, Forgey WW, Martin WJ. Medical risks of wilderness hiking. Am J Med. 2003;114:288-293. doi:10.1016/S0002-9343(02)01494-8.